SoFunction
Updated on 2025-03-02

Examples of Python numpy logical operation methods

In NumPy, logical operation methods are used to perform logical operations on elements in an array. They are usually used in boolean arrays, and can also be used in numeric arrays. Non-zero values ​​are considered asTrue, zero value is consideredFalse. Common logical operations are:

1. numpy.logical_and

Perform logic and operation (AND) on an element-by-element basis only if the elements in the corresponding positions of the two arrays areTrueWhen  , the result isTrue

Example:

import numpy as np

a = ([True, False, True, False])
b = ([True, True, False, False])

result = np.logical_and(a, b)
print(result)  # [ True False False False]

2. numpy.logical_or

Perform logical or operation (OR) elements, as long as there is an element in the corresponding position in the two arrays.True, the result isTrue

Example:

import numpy as np

a = ([True, False, True, False])
b = ([True, True, False, False])

result = np.logical_or(a, b)
print(result)  # [ True  True  True False]

3. numpy.logical_xor

Perform logical XOR operation (XOR) on an element-by-element basis. When the elements in the corresponding positions in the two arrays are different, the result isTrue

Example:

import numpy as np

a = ([True, False, True, False])
b = ([True, True, False, False])

result = np.logical_xor(a, b)
print(result)  # [False  True  True False]

4. numpy.logical_not

Perform logical non-operation (NOT) on an element-by-element basis, andTrueConvert toFalse,WillFalseConvert toTrue

Example:

import numpy as np

a = ([True, False, True, False])

result = np.logical_not(a)
print(result)  # [False  True False  True]

5. 

Compare whether two arrays are equal element by element. If equal, returnTrue; Otherwise returnFalse

Example:

import numpy as np

a = ([1, 2, 3])
b = ([1, 2, 4])

result = (a, b)
print(result)  # [ True  True False]

6. numpy.not_equal

Compare elements by element to whether two arrays are not equal. If not equal, returnTrue; Otherwise returnFalse

Example:

import numpy as np

a = ([1, 2, 3])
b = ([1, 2, 4])

result = np.not_equal(a, b)
print(result)  # [False False  True]

7. 

Compare two arrays by element. If the element of the first array is larger than the element of the second array, returnTrue

Example:

import numpy as np

a = ([1, 2, 3])
b = ([1, 2, 2])

result = (a, b)
print(result)  # [False False  True]

8. numpy.greater_equal

Compare two arrays by element. If the element of the first array is greater than or equal to the element of the second array, returnTrue

Example:

import numpy as np

a = ([1, 2, 3])
b = ([1, 2, 2])

result = np.greater_equal(a, b)
print(result)  # [ True  True  True]

9. 

Compare two arrays by element. If the element of the first array is smaller than the element of the second array, returnTrue

Example:

import numpy as np

a = ([1, 2, 3])
b = ([1, 2, 4])

result = (a, b)
print(result)  # [False False  True]

10. numpy.less_equal

Compare two arrays by element. If the element of the first array is less than or equal to the element of the second array, returnTrue

Example:

import numpy as np

a = ([1, 2, 3])
b = ([1, 2, 4])

result = np.less_equal(a, b)
print(result)  # [ True  True  True]

11. numpy.bitwise_and

Perform bit and operations by element (usually used in integer arrays). andlogical_andSimilar, butbitwise_andProcessing binary representations of integers.

Example:

import numpy as np

a = ([1, 0, 1, 0], dtype=int)
b = ([1, 1, 0, 0], dtype=int)

result = np.bitwise_and(a, b)
print(result)

12. numpy.bitwise_or

Perform bits or operations by element for binary representation of integers.

Example:

import numpy as np

a = ([1, 0, 1, 0], dtype=int)
b = ([1, 1, 0, 0], dtype=int)

result = np.bitwise_or(a, b)
print(result)

13. numpy.bitwise_xor

Perform bit exclusive OR operation by element, used for binary representation of integers.

Example:

import numpy as np

a = ([1, 0, 1, 0], dtype=int)
b = ([1, 1, 0, 0], dtype=int)

result = np.bitwise_xor(a, b)
print(result)

Summarize

These logical operation methods can easily compare elements in an array and logical operations on elements by element. They are widely used in array filtering, selection, conditional judgment and masking operations.

This is the end of this article about Python numpy logical operation methods. For more related numpy logical operation methods, please search for my previous articles or continue browsing the related articles below. I hope everyone will support me in the future!