1. Data column to row
import pandas as pd # Import pandas library def pivot_excel_data(input_file, output_file): """ Will Excel Convert data rows in the file into columns,and save as new Excel document Parameters: input_file (str): Input Excel document路径 output_file (str): Output Excel document路径 Returns: None """ # Read Excel data df = pd.read_excel(input_file, sheet_name='Sheet1') # Use the pivot_table() function to convert data rows into columns df_pivot = df.pivot_table(index='Shop', columns='New Fee Type', values='Amount').reset_index() # Save the processed data to a new Excel file df_pivot.to_excel(output_file, index=False) # Call function for data processinginput_file = 'C:\\Users\\Administrator\\Desktop\\New Data_After Processing.xlsx' output_file = 'converted_data.xlsx' pivot_excel_data(input_file, output_file)
2. Data rows and columns
import pandas as pd # Import pandas library def melt_excel_data(input_file, output_file): """ Will Excel Convert data columns in the file to rows,and save as new Excel document Parameters: input_file (str): Input Excel document路径 output_file (str): Output Excel document路径 Returns: None """ # Read Excel data df = pd.read_excel(input_file, sheet_name='Sheet1') # Use melt() function to convert data columns into rows df_melted = (id_vars=['Shop'], var_name='Fee Type', value_name='Amount') # Save the processed data to a new Excel file df_melted.to_excel(output_file, index=False) # Call function for data processinginput_file = 'C:\\Users\\Administrator\\Desktop\\converted_data.xlsx' output_file = 'converted_data2.xlsx' melt_excel_data(input_file, output_file)
This is the article about how to use pandas to transfer data rows and columns to transfer columns. For more related pandas rows and columns, please search for my previous articles or continue browsing the related articles below. I hope everyone will support me in the future!