This class will automatically update cached data in the background, you only need to call methods to get the data.
Automatically update cache classes
The following isAutoUpdatingCache
Class implementation:
import threading import time class AutoUpdatingCache: def __init__(self, update_function, expiry_time=60): """ Initialize the cache class. :param update_function: A function that generates or updates cached data. :param expiry_time: The cached update period (seconds). """ self.update_function = update_function self.expiry_time = expiry_time self.cache_data = None self.last_updated = 0 = () self._start_background_update() def _start_background_update(self): # Start the background thread to update the cache self.update_thread = (target=self._update_cache_periodically) self.update_thread.daemon = True self.update_thread.start() def _update_cache_periodically(self): while True: current_time = () if current_time - self.last_updated >= self.expiry_time: self._update_cache() (1) # Check once every second def _update_cache(self): with : try: print("Updating cache...") new_data = self.update_function() self.cache_data = new_data self.last_updated = () print("Cache updated!") except Exception as e: print(f"Error updating cache: {e}") def get_data(self): with : if self.cache_data is not None: return self.cache_data else: return "Cache is initializing, please try again later."
Instructions for use
Define a data generation function
First, you need to define a function for generating or updating cached data. This function can be any time-consuming operation, such as querying from a database, calculating complex results, etc.
import time def generate_cache_data(): # Simulation time-consuming operation (5) return {"value": "fresh data", "timestamp": ()}
Create an instance of the cache class
Pass the data generation function toAutoUpdatingCache
class and set cache update cycle.
cache = AutoUpdatingCache(update_function=generate_cache_data, expiry_time=30)
Get cached data
Call where neededget_data()
Methods to obtain cached data.
data = cache.get_data() print(data)
Complete example
Combine the above steps:
import threading import time class AutoUpdatingCache: def __init__(self, update_function, expiry_time=60): self.update_function = update_function self.expiry_time = expiry_time self.cache_data = None self.last_updated = 0 = () self._start_background_update() def _start_background_update(self): self.update_thread = (target=self._update_cache_periodically) self.update_thread.daemon = True self.update_thread.start() def _update_cache_periodically(self): while True: current_time = () if current_time - self.last_updated >= self.expiry_time: self._update_cache() (1) def _update_cache(self): with : try: print("Updating cache...") new_data = self.update_function() self.cache_data = new_data self.last_updated = () print("Cache updated!") except Exception as e: print(f"Error updating cache: {e}") def get_data(self): with : if self.cache_data is not None: return self.cache_data else: return "Cache is initializing, please try again later." # Data generation functiondef generate_cache_data(): (5) # Simulation time-consuming operation return {"value": "fresh data", "timestamp": ()} # Create a cache instancecache = AutoUpdatingCache(update_function=generate_cache_data, expiry_time=30) # Simulate to get datafor _ in range(10): data = cache.get_data() print(data) (10)
Code explanation
-
AutoUpdatingCache Class
-
initmethod:
- Initialize the cache, set the data generation function and cache update cycle.
- Start the background thread
_update_cache_periodically
。
-
_update_cache_periodically method:
- Infinite loop, checking every second to see if the cache needs to be updated.
- If the current time has been updated for the last time exceeds the
expiry_time
, then call_update_cache
。
-
_update_cache method:
- use
update_function
Update cached data. - Use lock mechanism
Ensure thread safety.
- use
-
get_data method:
- Get cached data.
- If the cached data is empty (initialization), the prompt message is returned.
-
initmethod:
-
Data generation function
-
generate_cache_data
The function simulates a time-consuming operation and generates new cached data.
-
-
Example of usage
- Create a cache instance and get data every 10 seconds in the loop to observe the update of the cache.
Things to note
-
Thread Safety:
- use
Ensure the security of data access in a multi-threaded environment.
- use
-
Exception handling:
- When updating the cache, catch possible exceptions to prevent thread crashes.
-
Background thread:
- Set the thread as a daemon thread (
daemon=True
), causing the thread to automatically end when the main program exits.
- Set the thread as a daemon thread (
Application scenarios
You can apply this cache class to a web application, for example in Sanic's route:
from sanic import Sanic from import json app = Sanic("CacheApp") @("/data") async def get_cached_data(request): data = cache.get_data() return json({"data": data}) if __name__ == "__main__": # Make sure the cache is initialized before application startup cache = AutoUpdatingCache(update_function=generate_cache_data, expiry_time=30) (host="0.0.0.0", port=8000)
In this way, the user is visiting/data
When routing, the cache can always be obtained, and the cache will be automatically updated in the background, and the request will not time out due to updating the cache.
This is the introduction to this article about the specific use of python3 automatic update cache class. For more related contents of python3 automatic update cache class, please search for my previous articles or continue browsing the related articles below. I hope everyone will support me in the future!