1. Hot spot data identification mechanism
1.1 Counter method
@Service public class HotDataCounter { @Autowired private RedisTemplate<String, Object> redisTemplate; // Access count public void incrementCounter(String key) { String countKey = "counter:" + key; ().increment(countKey, 1); // Set the counter expiration time, such as 1 hour (countKey, 1, ); } // Get the number of visits public Long getCounter(String key) { String countKey = "counter:" + key; return (Long) ().get(countKey); } }
1.2 LRU algorithm implementation
public class LRUCache<K, V> extends LinkedHashMap<K, V> { private final int capacity; public LRUCache(int capacity) { super(capacity, 0.75f, true); = capacity; } @Override protected boolean removeEldestEntry(<K, V> eldest) { return size() > capacity; } }
2. Dynamic cache strategy implementation
2.1 Basic Caching Service
@Service public class DynamicCacheService { @Autowired private RedisTemplate<String, Object> redisTemplate; @Autowired private HotDataCounter hotDataCounter; // Hot spot threshold private static final long HOT_THRESHOLD = 100; // Get data public Object getData(String key) { // Increase access count (key); // Get data from cache Object value = ().get(key); if (value != null) { return value; } // Get data from the database value = getFromDB(key); // Determine whether it is hot data if (isHotData(key)) { // Set a long expiration time for hot spot data ().set(key, value, 1, ); } else { // Set a short expiration time for non-hot data ().set(key, value, 5, ); } return value; } // Determine whether it is hot data private boolean isHotData(String key) { Long count = (key); return count != null && count > HOT_THRESHOLD; } }
2.2 Timed task update strategy
@Component public class HotDataScheduler { @Autowired private RedisTemplate<String, Object> redisTemplate; @Scheduled(fixedRate = 300000) // Perform every 5 minutes public void updateHotData() { // Get all counters Set<String> counterKeys = ("counter:"); if (counterKeys == null) return; // Update hotspot data expiration time for (String counterKey : counterKeys) { String dataKey = ("counter:".length()); Long count = (Long) ().get(counterKey); if (count != null && count > HOT_THRESHOLD) { // Extend the expiration time of hot spot data (dataKey, 1, ); } } } }
3. Multi-level caching strategy
3.1 Local cache with Redis
@Service public class MultiLevelCache { @Autowired private RedisTemplate<String, Object> redisTemplate; // Local cache private final LoadingCache<String, Object> localCache = () .maximumSize(1000) .expireAfterWrite(5, ) .build(new CacheLoader<String, Object>() { @Override public Object load(String key) { return getFromRedis(key); } }); public Object get(String key) { try { return (key); } catch (ExecutionException e) { return getFromRedis(key); } } private Object getFromRedis(String key) { Object value = ().get(key); if (value == null) { value = getFromDB(key); if (value != null) { ().set(key, value); } } return value; } }
4. Hotspot data preload
4.1 Preheating service
@Service public class HotDataPreloader { @Autowired private RedisTemplate<String, Object> redisTemplate; @PostConstruct public void preloadHotData() { // Get historical hotspot data from statistics List<String> historicalHotKeys = getHistoricalHotKeys(); // Preload data to Redis for (String key : historicalHotKeys) { Object value = getFromDB(key); if (value != null) { ().set(key, value, 1, ); } } } }
5. Cache update policy
5.1 Update Service
@Service public class CacheUpdateService { @Autowired private RedisTemplate<String, Object> redisTemplate; // Update cached data @Transactional public void updateData(String key, Object value) { // Update the database updateDB(key, value); // Determine whether it is hot data if (isHotData(key)) { // Directly update the cache ().set(key, value, 1, ); } else { // Delete the cache (key); } } }
6. Monitoring and Alarming
6.1 Monitoring Service
@Service public class CacheMonitorService { @Autowired private RedisTemplate<String, Object> redisTemplate; // Monitor cache hit rate public double getHitRate() { Long hits = (Long) ().get("cache:hits"); Long misses = (Long) ().get("cache:misses"); if (hits == null || misses == null) { return 0.0; } return (double) hits / (hits + misses); } // Record cache access public void recordAccess(boolean isHit) { String key = isHit ? "cache:hits" : "cache:misses"; ().increment(key, 1); } }
7. Configuration Management
7.1 Dynamic configuration
@Configuration @RefreshScope public class CacheConfig { @Value("${:100}") private long hotThreshold; @Value("${:3600}") private long hotExpireSeconds; @Value("${:300}") private long normalExpireSeconds; }
8. Summary
-
Hot spot identification:
- Use counter to record access frequency
- Implement LRU algorithm management cache
-
Dynamic cache:
- Dynamically adjust the expiration time according to the access frequency
- Timed tasks update hotspot data
-
Multi-level cache:
- Local cache with Redis
- Reduce network overhead
-
Preloading mechanism:
- Preload historical hotspot data when system starts
- Improve access performance after system startup
-
Update policy:
- Hotspot data is directly updated to cache
- Delete the non-hot data
-
Monitoring alarm:
- Monitor cache hit rate
- Record access statistics
-
Configuration Management:
- Support dynamic configuration adjustment
- Flexible control of cache policies
This is the end of this article about the design of Redis dynamic hotspot data caching strategy. For more related Redis dynamic hotspot cache content, please search for my previous articles or continue browsing the related articles below. I hope everyone will support me in the future!