SoFunction
Updated on 2025-03-08

Java implementation of samza conversion to flink

Migrating an Apache Samza job to an Apache Flink job is a complex task because the two stream processing frameworks have different APIs and architectures. However, we can migrate the core logic of the Samza job to Flink and try to keep the functionality consistent.

Suppose we have a simple Samza job that reads data from Kafka, does some processing, and then writes the result back to Kafka. We migrate this logic to Flink.

1. Samza homework example

First, let's assume that there is a simple Samza assignment:

// 
import ;
import ;
import ;
import ;
 
import ;
import ;
 
public class SamzaConfig {
    public static Config getConfig() {
        Map<String, String> configMap = new HashMap<>();
        ("", "samza-flink-migration-example");
        ("", "");
        ("", "/path/to/");
        ("", "-input-topic");
        ("", "-output-topic");
        ("", "");
        ("", ());
        ("", ());
        ("", "localhost:9092");
 
        return new MapConfig(configMap);
    }
}
 
// 
import ;
import ;
import ;
import ;
import ;
import ;
import ;
import ;
import ;
import ;
import ;
import ;
 
import ;
import ;
 
public class MySamzaTask implements StreamApplication, TaskInit, TaskRun {
    private JsonSerde<String> jsonSerde = new JsonSerde<>();
 
    @Override
    public void init(Config config, TaskContext context, TaskCoordinator coordinator) throws Exception {
        // Initialization logic if needed
    }
 
    @Override
    public void run() throws Exception {
        MessageCollector collector = getContext().getMessageCollector();
        SystemStream inputStream = getContext().getJobContext().getInputSystemStream("kafka", "my-input-topic");
 
        for (IncomingMessageEnvelope envelope : getContext().getPoll(inputStream, "MySamzaTask")) {
            String input = new String(());
            String output = processMessage(input);
            (new OutgoingMessageEnvelope(getContext().getOutputSystem("kafka"), "my-output-topic", (output)));
        }
    }
 
    private String processMessage(String message) {
        // Simple processing logic: convert to uppercase
        return ();
    }
 
    @Override
    public StreamApplicationDescriptor getDescriptor() {
        return new StreamApplicationDescriptor("MySamzaTask")
                .withConfig(())
                .withTaskClass(());
    }
}

2. Flink job example

Now, let's migrate this Samza job to Flink:

// 
import ;
 
public class FlinkConfig {
    public static Configuration getConfig() {
        Configuration config = new Configuration();
        ("", "streaming");
        ("", "localhost");
        ("", 1);
        ("", "STREAMING");
        return config;
    }
}
 
// 
import ;
import ;
import ;
import ;
import ;
import ;
 
import ;
 
public class MyFlinkJob {
    public static void main(String[] args) throws Exception {
        // Set up the execution environment
        final StreamExecutionEnvironment env = ();
 
        // Configure Kafka consumer
        Properties properties = new Properties();
        ("", "localhost:9092");
        ("", "flink-consumer-group");
 
        FlinkKafkaConsumer<String> consumer = new FlinkKafkaConsumer<>("my-input-topic", new SimpleStringSchema(), properties);
 
        // Add source
        DataStream<String> stream = (consumer);
 
        // Process the stream
        DataStream<String> processedStream = (new MapFunction<String, String>() {
            @Override
            public String map(String value) throws Exception {
                return ();
            }
        });
 
        // Configure Kafka producer
        FlinkKafkaProducer<String> producer = new FlinkKafkaProducer<>("my-output-topic", new SimpleStringSchema(), properties);
 
        // Add sink
        (producer);
 
        // Execute the Flink job
        ("Flink Migration Example");
    }
}

3. Run Flink jobs

(1)Set up the Flink environment: Make sure you have Apache Flink installed and that the Kafka cluster is running.

(2) Compile and run:

  • Use Maven or Gradle to compile Java code.
  • Submit Flink jobs to the Flink cluster or run locally.
# Compile (assuming Maven)mvn clean package
 
# Submit to the Flink cluster (assuming Flink is running locally)./bin/flink run -c  target/

4. Things to note

  • Dependency management: Make sure to be inorAdded dependencies for Flink and Kafka.
  • Serialization: Used by FlinkSimpleStringSchemaDo simple string serialization, if more complex serialization is required, you can use a custom serializer.
  • Error handling: Samza and Flink differ in error handling, ensuring that possible exceptions are handled properly in Flink.
  • Performance Tuning: Performance tuning of Flink jobs according to actual needs, including configurations such as parallelism, status backend and other configurations.

This example shows how to migrate a simple Samza job to Flink.

This is the end of this article about Java's conversion of samza into flink. For more related content on Java samza to flink, please search for my previous articles or continue browsing the related articles below. I hope everyone will support me in the future!