introduction
DeepSeek is a powerful AI model service platform. This article will introduce in detail how to use the Go language to call the DeepSeek API to implement streaming output and dialogue functions.
Deepseek's API is no longer useful because it is hit hard. This article uses DeepSeek:/i/vnCCfVaQExplain as an example.
1. Environmental preparation
First, we need to prepare the following:
Go locale
DeepSeek API Access Permissions
Development tools (such as VS Code)
2. Basic code implementation
2.1 Create a project structure
mkdir deepseek-go cd deepseek-go go mod init deepseek-go
2.2 Core code implementation
package main import ( "bufio" "encoding/json" "fmt" "net/http" "os" "strings" "time" ) // Define the response structuretype ChatResponse struct { Choices []struct { Delta struct { Content string `json:"content"` } `json:"delta"` } `json:"choices"` } func main() { // Create output file file, err := ("", os.O_APPEND|os.O_CREATE|os.O_WRONLY, 0644) if err != nil { ("Error opening file: %v\n", err) return } defer () // API configuration url := "/v1/chat/completions" for { // Get user input ("\nPlease enter your question (enter q quit): ") reader := () question, _ := ('\n') question = (question) if question == "q" { break } // Record the conversation time timestamp := ().Format("2006-01-02 15:04:05") (("\n[%s] Question:\n%s\n\n", timestamp, question)) // Build the request body payload := (`{ "model": "deepseek-ai/DeepSeek-V3", "messages": [ { "role": "user", "content": "%s" } ], "stream": true, "max_tokens": 2048, "temperature": 0.7 }`, question) // Send a request req, _ := ("POST", url, (payload)) ("Content-Type", "application/json") ("Authorization", "Bearer YOUR_API_KEY") // Replace with your API Key // Get the response res, _ := (req) defer () // Handle streaming response scanner := () for { line, err := ('\n') if err != nil { break } line = (line) if line == "" || line == "data: [DONE]" { continue } if (line, "data: ") { line = (line, "data: ") } var response ChatResponse if err := ([]byte(line), &response); err != nil { continue } if len() > 0 { content := [0]. if content != "" { (content) (content) } } } } }
3. Main features description
3.1 Streaming Output
The DeepSeek API supports streaming output (Stream) and by setting "stream": true, we can achieve the effect of displaying AI replies in real time. This brings a better user experience:
- See the response content instantly
- Reduce waiting time
- A more natural dialogue experience
3.2 Parameter configuration
{ "model": "deepseek-ai/DeepSeek-V3", "messages": [...], "stream": true, "max_tokens": 2048, "temperature": 0.7, "top_p": 0.7, "top_k": 50, "frequency_penalty": 0.5 }
Parameter description:
- model: Select the model to use
- max_tokens: Maximum output length
- temperature: temperature parameter, control the randomness of output
- top_p, top_k: Control the sampling strategy
- frequency_penalty: controls repetition
3.3 Dialogue Record
The program will automatically save all conversations to a file, including:
- Timestamp
- User Problems
- AI answer
- Formatted separators
4. Use examples
Run the program:
go run
Input questions, such as:
Please enter your question: introduce the main features of DeepSeek
Observe real-time output and file records
5. Error handling and best practices
Key Management
- Use environment variables to store API keys
- Don't hardcode the key in the code
- Regularly rotate keys
2. Error handling
- Check network connection
- Verify API response
- Handle streaming output interrupts
3. Performance optimization
- Use the appropriate buffer size
- Close the connection in time
- Process concurrent requests
Summarize
Through this article, you should have mastered the basic methods of how to use Go to call the DeepSeek API. DeepSeek provides powerful AI capabilities, and can build various interesting applications with the efficient performance of the Go language.
This is the article about this complete guide to calling the DeepSeek API in Go. For more information about calling the DeepSeek API in Go, please search for my previous articles or continue browsing the related articles below. I hope everyone will support me in the future!