SoFunction
Updated on 2025-04-07

Detailed steps for using Python module for data processing

1. Use the Pandas module for data processing

Install Pandas

pip install pandas

Sample code

import pandas as pd

# Create a DataFramedata = {
    "Name": ["Alice", "Bob", "Charlie"],
    "Age": [25, 30, 35],
    "City": ["New York", "Los Angeles", "Chicago"]
}

df = (data)

# View DataFrameprint(df)

# Data cleaning# Delete duplicate linesdf.drop_duplicates(inplace=True)

# Fill in missing values(value={"Age": 0, "City": "Unknown"}, inplace=True)

# Data Filteryoung_people = df[df["Age"] < 30]
print(young_people)

# Data sortingsorted_df = df.sort_values(by="Age", ascending=False)
print(sorted_df)

# Data aggregationaverage_age = df["Age"].mean()
print(f"Average Age: {average_age}")

# Data Exportdf.to_csv("", index=False)

2. Use the NumPy module for numerical calculations

Install NumPy

pip install numpy

Sample code

import numpy as np

# Create a NumPy arraydata = ([[1, 2, 3], [4, 5, 6], [7, 8, 9]])

# View arrayprint(data)

# Numerical calculationmean_value = (data)
print(f"Mean Value: {mean_value}")

# Array Slicingsub_array = data[1:, :2]
print(sub_array)

# Array Operationdata_squared = data ** 2
print(data_squared)

# Data Export("", data, fmt="%d")

3. Use the Matplotlib module for data visualization

Install Matplotlib

pip install matplotlib

Sample code

import  as plt

# Create datax = [1, 2, 3, 4, 5]
y = [2, 3, 5, 7, 11]

# Draw a line chart(x, y, label="Line 1")
("Line Plot Example")
("X-axis")
("Y-axis")
()
()

# Draw a bar chartcategories = ["A", "B", "C", "D", "E"]
values = [10, 15, 7, 12, 20]

(categories, values, color="skyblue")
("Bar Chart Example")
("Categories")
("Values")
()

4. Use the Scikit-learn module for machine learning

Install Scikit-learn

pip install scikit-learn

Sample code

from sklearn.model_selection import train_test_split
from sklearn.linear_model import LinearRegression
from  import mean_squared_error
import numpy as np

# Create dataX = ([[1], [2], [3], [4], [5]])
y = ([2, 4, 6, 8, 10])

# Divide the training set and the test setX_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)

# Create a linear regression modelmodel = LinearRegression()

# Train the model(X_train, y_train)

# Make predictionsy_pred = (X_test)

# Evaluate the modelmse = mean_squared_error(y_test, y_pred)
print(f"Mean Squared Error: {mse}")

5. Comprehensive data processing and visualization using Pandas and Matplotlib

Sample code

import pandas as pd
import  as plt

# Create a DataFramedata = {
    "Name": ["Alice", "Bob", "Charlie"],
    "Age": [25, 30, 35],
    "City": ["New York", "Los Angeles", "Chicago"]
}

df = (data)

# Data cleaningdf.drop_duplicates(inplace=True)
(value={"Age": 0, "City": "Unknown"}, inplace=True)

# Data Filteryoung_people = df[df["Age"] < 30]

# Data sortingsorted_df = df.sort_values(by="Age", ascending=False)

# Data visualization(figsize=(10, 6))
(sorted_df["Name"], sorted_df["Age"], color="skyblue")
("Age Distribution")
("Name")
("Age")
()

Summarize

By using modules such as Pandas, NumPy, Matplotlib, and Scikit-learn, you can efficiently perform data processing, numerical calculations, data visualization, and machine learning. These modules provide rich functions to help you complete the entire data processing process from data cleaning to model training to result visualization. Hope these code examples and explanations are helpful to you.

The above is the detailed content of the detailed steps for using Python module for data processing. For more information about Python module data processing, please pay attention to my other related articles!