1. Use the Pandas module for data processing
Install Pandas
pip install pandas
Sample code
import pandas as pd # Create a DataFramedata = { "Name": ["Alice", "Bob", "Charlie"], "Age": [25, 30, 35], "City": ["New York", "Los Angeles", "Chicago"] } df = (data) # View DataFrameprint(df) # Data cleaning# Delete duplicate linesdf.drop_duplicates(inplace=True) # Fill in missing values(value={"Age": 0, "City": "Unknown"}, inplace=True) # Data Filteryoung_people = df[df["Age"] < 30] print(young_people) # Data sortingsorted_df = df.sort_values(by="Age", ascending=False) print(sorted_df) # Data aggregationaverage_age = df["Age"].mean() print(f"Average Age: {average_age}") # Data Exportdf.to_csv("", index=False)
2. Use the NumPy module for numerical calculations
Install NumPy
pip install numpy
Sample code
import numpy as np # Create a NumPy arraydata = ([[1, 2, 3], [4, 5, 6], [7, 8, 9]]) # View arrayprint(data) # Numerical calculationmean_value = (data) print(f"Mean Value: {mean_value}") # Array Slicingsub_array = data[1:, :2] print(sub_array) # Array Operationdata_squared = data ** 2 print(data_squared) # Data Export("", data, fmt="%d")
3. Use the Matplotlib module for data visualization
Install Matplotlib
pip install matplotlib
Sample code
import as plt # Create datax = [1, 2, 3, 4, 5] y = [2, 3, 5, 7, 11] # Draw a line chart(x, y, label="Line 1") ("Line Plot Example") ("X-axis") ("Y-axis") () () # Draw a bar chartcategories = ["A", "B", "C", "D", "E"] values = [10, 15, 7, 12, 20] (categories, values, color="skyblue") ("Bar Chart Example") ("Categories") ("Values") ()
4. Use the Scikit-learn module for machine learning
Install Scikit-learn
pip install scikit-learn
Sample code
from sklearn.model_selection import train_test_split from sklearn.linear_model import LinearRegression from import mean_squared_error import numpy as np # Create dataX = ([[1], [2], [3], [4], [5]]) y = ([2, 4, 6, 8, 10]) # Divide the training set and the test setX_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42) # Create a linear regression modelmodel = LinearRegression() # Train the model(X_train, y_train) # Make predictionsy_pred = (X_test) # Evaluate the modelmse = mean_squared_error(y_test, y_pred) print(f"Mean Squared Error: {mse}")
5. Comprehensive data processing and visualization using Pandas and Matplotlib
Sample code
import pandas as pd import as plt # Create a DataFramedata = { "Name": ["Alice", "Bob", "Charlie"], "Age": [25, 30, 35], "City": ["New York", "Los Angeles", "Chicago"] } df = (data) # Data cleaningdf.drop_duplicates(inplace=True) (value={"Age": 0, "City": "Unknown"}, inplace=True) # Data Filteryoung_people = df[df["Age"] < 30] # Data sortingsorted_df = df.sort_values(by="Age", ascending=False) # Data visualization(figsize=(10, 6)) (sorted_df["Name"], sorted_df["Age"], color="skyblue") ("Age Distribution") ("Name") ("Age") ()
Summarize
By using modules such as Pandas, NumPy, Matplotlib, and Scikit-learn, you can efficiently perform data processing, numerical calculations, data visualization, and machine learning. These modules provide rich functions to help you complete the entire data processing process from data cleaning to model training to result visualization. Hope these code examples and explanations are helpful to you.
The above is the detailed content of the detailed steps for using Python module for data processing. For more information about Python module data processing, please pay attention to my other related articles!