1. Search enhancement
1. Multimodal hybrid search
Scene: Combining multimodal data such as text and images to improve recall rate
accomplish:
javaCopy the code // 1. Text vector search (Milvus)List<Float> textVector = (queryText); SearchParam textSearchParam = buildTextSearchParam(textVector); // 2. Image feature search (CLIP model)float[] imageVector = (uploadedImage); SearchParam imageSearchParam = buildImageSearchParam(imageVector); // 3. Results Fusion (weighted average)List<Document> textResults = (textSearchParam); List<Document> imageResults = (imageSearchParam); List<Document> fusedResults = (textResults, imageResults, 0.6, 0.4);
2. Query Expansion
Scene: Extend original query semantics through LLM
accomplish:
javaCopy the code public String expandQuery(String originalQuery) { String prompt = """ You are a professional search optimization assistant. Please generate 3 semantic-related extended queries based on the following queries: Original query: %s Output format: JSON array, field is "queries" """.formatted(originalQuery); String response = (prompt); List<String> expandedQueries = parseExpandedQueries(response); // parse JSON return (" ", expandedQueries); } // Use extended query when searchingString enhancedQuery = expandQuery(userQuery); float[] vector = (enhancedQuery);
3. Dynamic weight adjustment
Scene: Real-time optimization of search weights based on user feedback
javaCopy the code @RestController public class FeedbackController { @PostMapping("/feedback") public void handleFeedback(@RequestBody FeedbackRequest request) { // Adjust the model according to the correlation score marked by the user ( (), (), () ); } }
2. Generation enhancement
1. Context Compression
Scene: Filter redundant information and retain key content
javaCopy the code public String compressContext(String rawContext) { String prompt = """ Please extract the core facts related to the problem from the following text, ignoring irrelevant details: Question: %s Text: %s Output requirements: rendered with a simple Markdown list """.formatted(userQuestion, rawContext); return (prompt); }
2. Multi-stage generation (Step-back Prompting)
Scene: Improve generation accuracy through reflection
javaCopy the code public String generateWithReflection(String question) { // Phase 1: Preliminary answer String initialAnswer = (question); // Stage 2: Reflection and correction String reflectionPrompt = """ Please check if there are any factual errors or incomplete answers below: question:%s First edition answer:%s Output format:{"errors": [mistake1, mistake2], "improved_answer": "Revised answer"} """.formatted(question, initialAnswer); String reflectionResult = (reflectionPrompt); return parseImprovedAnswer(reflectionResult); }
3. Re-ranking
Scene: Perform LLM correlation rearrangement of search results
javaCopy the code public List<Document> rerankDocuments(String query, List<Document> candidates) { String promptTemplate = """ Please sort the following documents according to the relevance of the question (most relevant first): Question: %s Document list: %s Output requirements: Return the sorted document ID list, such as [3,1,2] """; String docList = () .map(doc -> "ID:%d Content:%s".formatted((), ())) .collect(("\n")); String response = ((query, docList)); return applyReordering(candidates, parseOrderedIds(response)); }
III. System-level enhancement
1. Cache Optimization
Scene: Caches of high-frequency query results
//java copy code@Cacheable(value = "ragCache", key = "#()") public RAGResponse cachedRetrieve(String query) { // Normal search and generation process List<Document> docs = retrieveDocuments(query); String answer = generateAnswer(query, docs); return new RAGResponse(docs, answer); }
2. Asynchronous pipeline
Scene: Improve high concurrency throughput
//java copy code@Async public CompletableFuture<RAGResponse> asyncProcess(String query) { CompletableFuture<List<Document>> retrievalFuture = ( () -> retrieveDocuments(query), retrievalExecutor ); return (docs -> { String answer = generateAnswer(query, docs); return new RAGResponse(docs, answer); }, generationExecutor); }
3. Observability enhancement
Scene: Monitor search quality and generation effect
//java copy code@Aspect @Component public class MonitoringAspect { @Around("execution(* .*(..))") public Object logMetrics(ProceedingJoinPoint joinPoint) throws Throwable { long start = (); Object result = (); ("", () - start); if (result instanceof RAGResponse resp) { ("rag.doc_count").increment(().size()); } return result; } }
4. Enhanced plan selection suggestions
Scene | Recommended plan | Implement complexity | Improved results |
---|---|---|---|
High real-time requirements | Local mini-model + cache | ★★☆ | Delay reduction by 40% |
High accuracy requirement | Mixed search + reorder | ★★★ | Recall rate ↑15% |
Multimodal scene | CLIP cross-modal search | ★★★☆ | Cross-modal matching ↑30% |
Resource-constrained environment | Quantitative model + pruning | ★★☆ | Memory usage ↓60% |
5. Enhanced effect verification
AB Test Framework
//java copy code@PostMapping("/query") public RAGResponse handleQuery(@RequestBody QueryRequest request) { if (((), "V2_ENHANCED")) { return (()); } else { return (()); } }
Evaluation indicators:
//java copy codepublic class Evaluator { // Calculate MRR (Average Reciprocal Ranking) public double calculateMRR(List<TestCase> testCases) { return () .mapToDouble(tc -> 1.0 / (getFirstRelevantRank(tc)+1)) .average().orElse(0); } // Manual evaluation of quality generation public void humanEvaluation(List<RAGResponse> samples) { // Integrate with the labeling platform } }
Through the above enhancement strategy, the RAG system can achieve the following improvements in typical business scenarios:
- Retrieval recall rate increased by 20-35%
- The manual score of generated results is increased by 15-25%
- 95th percentile delay decreases by 40-60%
The above is the detailed content of the solution and examples of SpringBoot implementing vector database optimization retrieval. For more information about SpringBoot vector database optimization retrieval, please pay attention to my other related articles!