SoFunction
Updated on 2025-04-08

SpringBoot implements vector database optimization retrieval plan and example

1. Search enhancement

1. Multimodal hybrid search

Scene: Combining multimodal data such as text and images to improve recall rate

accomplish

javaCopy the code
// 1. Text vector search (Milvus)List<Float> textVector = (queryText);
SearchParam textSearchParam = buildTextSearchParam(textVector);

// 2. Image feature search (CLIP model)float[] imageVector = (uploadedImage);
SearchParam imageSearchParam = buildImageSearchParam(imageVector);

// 3. Results Fusion (weighted average)List<Document> textResults = (textSearchParam);
List<Document> imageResults = (imageSearchParam);
List<Document> fusedResults = (textResults, imageResults, 0.6, 0.4);

2. Query Expansion

Scene: Extend original query semantics through LLM

accomplish

javaCopy the code
public String expandQuery(String originalQuery) {
    String prompt = """
         You are a professional search optimization assistant. Please generate 3 semantic-related extended queries based on the following queries:
         Original query: %s
         Output format: JSON array, field is "queries"
        """.formatted(originalQuery);

    String response = (prompt);
    List<String> expandedQueries = parseExpandedQueries(response); // parse JSON    return (" ", expandedQueries);
}

// Use extended query when searchingString enhancedQuery = expandQuery(userQuery);
float[] vector = (enhancedQuery);

3. Dynamic weight adjustment

Scene: Real-time optimization of search weights based on user feedback

javaCopy the code
@RestController
public class FeedbackController {
    @PostMapping("/feedback")
    public void handleFeedback(@RequestBody FeedbackRequest request) {
        // Adjust the model according to the correlation score marked by the user        (
            (),
            (),
            ()
        );
    }
}

2. Generation enhancement

1. Context Compression

Scene: Filter redundant information and retain key content

javaCopy the code
public String compressContext(String rawContext) {
    String prompt = """
         Please extract the core facts related to the problem from the following text, ignoring irrelevant details:
         Question: %s
         Text: %s
         Output requirements: rendered with a simple Markdown list
         """.formatted(userQuestion, rawContext);

    return (prompt);
}

2. Multi-stage generation (Step-back Prompting)

Scene: Improve generation accuracy through reflection

javaCopy the code
public String generateWithReflection(String question) {
    // Phase 1: Preliminary answer    String initialAnswer = (question);
    
    // Stage 2: Reflection and correction    String reflectionPrompt = """
        Please check if there are any factual errors or incomplete answers below:
        question:%s
        First edition answer:%s
        Output format:{"errors": [mistake1, mistake2], "improved_answer": "Revised answer"}
        """.formatted(question, initialAnswer);
    
    String reflectionResult = (reflectionPrompt);
    return parseImprovedAnswer(reflectionResult);
}

3. Re-ranking

Scene: Perform LLM correlation rearrangement of search results

javaCopy the code
public List<Document> rerankDocuments(String query, List<Document> candidates) {
    String promptTemplate = """
         Please sort the following documents according to the relevance of the question (most relevant first):
         Question: %s
         Document list:
         %s
         Output requirements: Return the sorted document ID list, such as [3,1,2]
         """;
    
    String docList = ()
        .map(doc -> "ID:%d Content:%s".formatted((), ()))
        .collect(("\n"));
    
    String response = ((query, docList));
    return applyReordering(candidates, parseOrderedIds(response));
}

III. System-level enhancement

1. Cache Optimization

Scene: Caches of high-frequency query results

//java copy code@Cacheable(value = "ragCache", key = "#()")
public RAGResponse cachedRetrieve(String query) {
    // Normal search and generation process    List<Document> docs = retrieveDocuments(query);
    String answer = generateAnswer(query, docs);
    return new RAGResponse(docs, answer);
}

2. Asynchronous pipeline

Scene: Improve high concurrency throughput

//java copy code@Async
public CompletableFuture<RAGResponse> asyncProcess(String query) {
    CompletableFuture<List<Document>> retrievalFuture = (
        () -> retrieveDocuments(query), 
        retrievalExecutor
    );
    
    return (docs -> {
        String answer = generateAnswer(query, docs);
        return new RAGResponse(docs, answer);
    }, generationExecutor);
}

3. Observability enhancement

Scene: Monitor search quality and generation effect

//java copy code@Aspect
@Component
public class MonitoringAspect {
    @Around("execution(* .*(..))")
    public Object logMetrics(ProceedingJoinPoint joinPoint) throws Throwable {
        long start = ();
        Object result = ();
        
        ("", () - start);
        if (result instanceof RAGResponse resp) {
            ("rag.doc_count").increment(().size());
        }
        
        return result;
    }
}

4. Enhanced plan selection suggestions

Scene Recommended plan Implement complexity Improved results
High real-time requirements Local mini-model + cache ★★☆ Delay reduction by 40%
High accuracy requirement Mixed search + reorder ★★★ Recall rate ↑15%
Multimodal scene CLIP cross-modal search ★★★☆ Cross-modal matching ↑30%
Resource-constrained environment Quantitative model + pruning ★★☆ Memory usage ↓60%

5. Enhanced effect verification

AB Test Framework

//java copy code@PostMapping("/query")
public RAGResponse handleQuery(@RequestBody QueryRequest request) {
    if (((), "V2_ENHANCED")) {
        return (());
    } else {
        return (());
    }
}

Evaluation indicators

//java copy codepublic class Evaluator {
    // Calculate MRR (Average Reciprocal Ranking)    public double calculateMRR(List<TestCase> testCases) {
        return ()
            .mapToDouble(tc -> 1.0 / (getFirstRelevantRank(tc)+1))
            .average().orElse(0);
    }
    
    // Manual evaluation of quality generation    public void humanEvaluation(List<RAGResponse> samples) {
        // Integrate with the labeling platform    }
}

Through the above enhancement strategy, the RAG system can achieve the following improvements in typical business scenarios:

  • Retrieval recall rate increased by 20-35%
  • The manual score of generated results is increased by 15-25%
  • 95th percentile delay decreases by 40-60%

The above is the detailed content of the solution and examples of SpringBoot implementing vector database optimization retrieval. For more information about SpringBoot vector database optimization retrieval, please pay attention to my other related articles!