SoFunction
Updated on 2025-04-11

Implementation of Pandas index operation index

Index is an important tool for Pandas. Through indexes, you can select specific rows and columns from DataFame. This way of selecting data is called "subset selection".

In Pandas, the index value is also called a label, which is displayed in bold in Jupyter notebooks. Indexing can speed up data access, it is like a bookmark of data, through which it can enable quick search of data.

Create an index

The index index is further explained through examples. Below is a data with the index index and use read_csv() to read the data:

import pandas as pd    
data = pd.read_csv("") 
print(data) 

Output result:

   ID   Name  Age      City  Salary
0   1   Jack   28   Beijing   22000
1   2   Lida   32  Shanghai   19000
2   3   John   43  Shenzhen   12000
3   4  Helen   38  Hengshui    3500

Read multiple columns of data through column index (label).

import pandas as pd  
#Set "Name" as row indexdata = pd.read_csv("", index_col ="Name")   
# Select multiple columns of data through column labelsa = data[["City","Salary"]]
print(a)

Output result:

           City  Salary
Name                  
Jack    Beijing   22000
Lida   Shanghai   19000
John   Shenzhen   12000
Helen  Hengshui    3500

Let's take a look at another set of simple examples:

import pandas as pd  
info =pd.read_csv("", index_col ="Name")
#Get single column data, or pass in ["Salary"] as a lista =info["Salary"] 
print(a)

Output result:

       Salary
Name        
Jack    22000
Lida    19000
John    12000
Helen    3500

Setting the index

set_index() Sets the existing column label to the DataFrame row index. In addition to adding indexes, you can also replace existing indexes. For example, you can also set Series or a DataFrme to the index of another DataFrame. Examples are as follows:

info = ({'Name': ['Parker', 'Terry', 'Smith', 'William'],  'Year': [2011, 2009, 2014, 2010], 
'Leaves': [10, 15, 9, 4]})
#Set Name as row indexprint(info.set_index('Name'))

Output result:

         Year  Leaves
Name                
Parker   2011      10
Terry    2009      15
Smith    2014       9
William  2010       4

Reset index

You can use reset_index() to restore the initial row index, as shown below:

import pandas as pd
import numpy as np
info = ([('William', 'C'), 
('Smith', 'Java'), 
('Parker', 'Python'), 
('Phill', )], 
index=[1, 2, 3, 4], 
columns=('name', 'Language')) 
print(info)
print(info.reset_index())

Output result:

Before reset:
     name    Language
1  William        C
2    Smith     Java
3   Parker   Python
4    Phill      NaN
After reset:
   index     name    Language
0      1  William        C
1      2    Smith     Java
2      3   Parker   Python
3      4    Phill      NaN

This is the end of this article about the implementation of Pandas index operation index. For more related Pandas index operation index content, please search for my previous articles or continue browsing the related articles below. I hope everyone will support me in the future!