1. Panoramic analysis of production environment demand
1.1 Industrial-grade requirements matrix for background processes
Dimension | Development environment requirements | Production environment requirements | Disaster recovery requirements |
---|---|---|---|
reliability | Single point operation | Cluster deployment | Cross-computer room disaster recovery |
Observability | Console output | Centralized logging | Distributed tracking |
Resource Management | Unlimited | CPU/Memory Limitations | Dynamic resource scheduling |
Lifecycle Management | Manual start and stop | Automatically pull up | Rolling Upgrade |
Security | Normal permissions | Minimum permission principle | Safety sandbox |
1.2 Analysis of typical application scenarios
IoT data collection: 7x24 hours of operation, disconnection and reconnection, resource-constrained environment
Financial trading system: submillisecond delay, zero-tolerance process interruption
AI training tasks: GPU resource management, long-term operation guarantee
Web Services: High concurrency processing, elegant start-stop mechanism
2. Advanced process management plan
2.1 Professional management with Supervisor
Architecture principle:
+---------------------+
| Supervisor Daemon |
+----------+----------+
|
| Manage subprocess
+----------v----------+
| Managed Process |
| (Python Script) |
+---------------------+
Configuration example (/etc/supervisor//):
[program:webapi] command=/opt/venv/bin/python /app/ directory=/app user=appuser autostart=true autorestart=true startsecs=3 startretries=5 stdout_logfile=/var/log/ stdout_logfile_maxbytes=50MB stdout_logfile_backups=10 stderr_logfile=/var/log/ stderr_logfile_maxbytes=50MB stderr_logfile_backups=10 environment=PYTHONPATH="/app",PRODUCTION="1"
Core functions:
- Automatic restart after abnormal process exit
- Log rotation management
- Resource usage monitoring
- Web UI Management Interface
- Event notification (email/Slack)
2.2 Kubernetes containerized deployment
Deployment configuration example:
apiVersion: apps/v1 kind: Deployment metadata: name: data-processor spec: replicas: 3 selector: matchLabels: app: data-processor template: metadata: labels: app: data-processor spec: containers: - name: main image: /data-processor:v1.2.3 resources: limits: cpu: "2" memory: 4Gi requests: cpu: "1" memory: 2Gi livenessProbe: exec: command: ["python", "/app/"] initialDelaySeconds: 30 periodSeconds: 10 readinessProbe: httpGet: path: /health port: 8080 volumeMounts: - name: config-volume mountPath: /app/config volumes: - name: config-volume configMap: name: app-config
Key Benefits:
- Automatic horizontal expansion
- Rolling update strategy
- Self-healing mechanism
- Resource isolation guarantee
- Cross-node scheduling capability
3. High availability architecture design
3.1 Multi-live architecture implementation
#Distributed lock example (Redis implementation)import redis from import Lock class HAWorker: def __init__(self): = (host='redis-cluster', port=6379) self.lock_name = "task:processor:lock" def run(self): while True: with Lock(, self.lock_name, timeout=30, blocking_timeout=5): self.process_data() (1) def process_data(self): # Core business logic pass
3.2 Heartbeat detection mechanism
# Prometheus-based survival detectionfrom prometheus_client import start_http_server, Gauge class HeartbeatMonitor: def __init__(self, port=9000): = Gauge('app_heartbeat', 'Last successful heartbeat') start_http_server(port) def update(self): .set_to_current_time() # Integrate in business codemonitor = HeartbeatMonitor() while True: process_data() () (60)
4. Advanced operation and maintenance skills
4.1 Comparison of log management plans
plan | Collection method | Query performance | Storage cost | Applicable scenarios |
---|---|---|---|---|
ELK Stack | Logstash | high | high | Big data analysis |
Loki+Promtail | Promtail | middle | Low | Kubernetes environment |
Splunk | Universal FW | Extremely high | Extremely high | Enterprise-level security audit |
Graylog | Syslog | middle | middle | Medium-sized enterprises |
4.2 Performance optimization indicator monitoring
# Use psutil for resource monitoringimport psutil def monitor_resources(): return { "cpu_percent": psutil.cpu_percent(interval=1), "memory_used": psutil.virtual_memory().used / 1024**3, "disk_io": psutil.disk_io_counters().read_bytes, "network_io": psutil.net_io_counters().bytes_sent } # Integrate into Prometheus exporterfrom prometheus_client import Gauge cpu_gauge = Gauge('app_cpu_usage', 'CPU usage percentage') mem_gauge = Gauge('app_memory_usage', 'Memory usage in GB') def update_metrics(): metrics = monitor_resources() cpu_gauge.set(metrics['cpu_percent']) mem_gauge.set(metrics['memory_used'])
5. Safety reinforcement practice
5.1 Implementation of the principle of minimum authority
# Create a dedicated usersudo useradd -r -s /bin/false appuser # Set file permissionssudo chown -R appuser:appgroup /opt/app sudo chmod 750 /opt/app # Use capabilities instead of rootsudo setcap CAP_NET_BIND_SERVICE=+eip /opt/venv/bin/python
5.2 Security Sandbox Configuration
# Use seccomp to restrict system callsimport prctl def enable_sandbox(): # Forbid new fork processes prctl.set_child_subreaper(1) prctl.set_no_new_privs(1) # Limit dangerous system calls from seccomp import SyscallFilter, ALLOW, KILL filter = SyscallFilter(defaction=KILL) filter.add_rule(ALLOW, "read") filter.add_rule(ALLOW, "write") filter.add_rule(ALLOW, "poll") ()
6. Disaster recovery and recovery strategies
6.1 State persistence scheme
# Checkpoint-based state recoveryimport pickle from datetime import datetime class StateManager: def __init__(self): self.state_file = "/var/run/app_state.pkl" def save_state(self, data): with open(self.state_file, 'wb') as f: ({ 'timestamp': (), 'data': data }, f) def load_state(self): try: with open(self.state_file, 'rb') as f: return (f) except FileNotFoundError: return None # Integrate in business logicstate_mgr = StateManager() last_state = state_mgr.load_state() while True: process_data(last_state) state_mgr.save_state(current_state) (60)
6.2 Cross-regional disaster recovery deployment
# AWS Multi-region Deployment Exampleresource "aws_instance" "app_east" { provider = -east-1 ami = "ami-0c55b159cbfafe1f0" instance_type = "" count = 3 } resource "aws_instance" "app_west" { provider = -west-2 ami = "ami-0c55b159cbfafe1f0" instance_type = "" count = 2 } resource "aws_route53_record" "app" { zone_id = var.dns_zone name = "" type = "CNAME" ttl = "300" records = [ aws_lb.app_east.dns_name, aws_lb.app_west.dns_name ] }
7. Performance tuning practice
7.1 Memory optimization tips
# Use __slots__ to reduce memory usageclass DataPoint: __slots__ = ['timestamp', 'value', 'quality'] def __init__(self, ts, val, q): = ts = val = q # Use memory_profiler to analyze@profile def process_data(): data = [DataPoint(i, i*0.5, 1) for i in range(1000000)] return sum( for d in data)
7.2 CPU-intensive task optimization
# Use Cython to speed up# File: cimport cython @(False) @(False) def calculate(double[:] array): cdef double total = 0.0 cdef int i for i in range([0]): total += array[i] ** 2 return total # Use multiprocessing to parallelizefrom multiprocessing import Pool def parallel_process(data_chunks): with Pool(processes=8) as pool: results = (process_chunk, data_chunks) return sum(results)
8. Future evolution direction
8.1 Serverless architecture transformation
# AWS Lambda function exampleimport boto3 def lambda_handler(event, context): s3 = ('s3') # Handle S3 events for record in event['Records']: bucket = record['s3']['bucket']['name'] key = record['s3']['object']['key'] # Execute processing logic process_file(bucket, key) return { 'statusCode': 200, 'body': 'Processing completed' }
8.2 Construction of intelligent operation and maintenance system
# Machine learning exception detectionfrom import IsolationForest class AnomalyDetector: def __init__(self): = IsolationForest(contamination=0.01) def train(self, metrics_data): (metrics_data) def predict(self, current_metrics): return ([current_metrics])[0] # Integrate into the monitoring systemdetector = AnomalyDetector() (historical_metrics) current = collect_metrics() if (current) == -1: trigger_alert()
9. Summary of industry best practices
Financial industry: adopting dual active architecture, RTO <30 seconds, RPO=0
E-commerce system: elastic expansion and capacity design to deal with traffic peaks
IoT Platform: Edge Computing + Cloud Collaboration Architecture
AI platform: GPU resource sharing scheduling, preemptive task management
This is the end of this article about the detailed explanation of how Python scripts continue to run in the background. For more related content on the background of Python scripts, please search for my previous articles or continue browsing the related articles below. I hope everyone will support me in the future!