Grammar:replace(self, to_replace=None, value=None, inplace=False, limit=None, regex=False, method='pad', axis=None)
The method of use is as follows:
import numpy as np import pandas as pd df = pd.read_csv('') df
#Series object value replacement s = [2]# Get row index 2 data # Single-value substitution ('?',)# With replacement? ({'?':'NA'})#Replace with NA? #Multi-value substitution (['?',r'$'],[,'NA'])# List value replacement ({'?':,'$':'NA'})# Dictionary mapping # Similar to the missing value filling method (['?','$'],method='pad')# Fill forward (['?','$'],method='ffill')# Fill forward (['?','$'],method='bfill')# Backfill The #limit parameter controls the number of fills (['?','$'],method='bfill',limit=1) #DataFrame object value replacement # Single-value substitution ('?',)# With replacement? ({'?':'NA'})#Replace with NA? # Specify single-value replacement by column ({'EMPNO':'?'},)# Replace the EMPNO column with ? ({'EMPNO':'?','ENAME':'.'},)#Replace the EMPNO column with ? and ENAME. #Multi-value substitution (['?','.','$'],[,'NA','None'])## Replace with? Replace $ with NA. Replace $ with None. ({'?':'NA','$':None})# Replace $ with NA? Replace $ with None ({'?','$'},{'NA',None})# Replace $ with NA? Replace $ with None # Regular substitution (r'\?|\.|\$',,regex=True)#With replacement? or . or $ original character ([r'\?',r'\$'],,regex=True)#with replacement? and $ ([r'\?',r'\$'],[,'NA'],regex=True)# with substitution? Replace the $ sign with NA (regex={r'\?':None}) #value parameter display pass (regex=[r'\?|\.|\$'],value=)#replaced with?maybe.maybe$original character
This is a small summary of the use of the pandas replace function is all that I have shared with you, I hope to give you a reference, and I hope that you will support me more.