I. Example: Baidu Migration
Baidu Maps Chinese New Year Population Migration Data (abbreviated asBaidu's migration), a technology program launched by Baidu during the 2014 Spring Festival. Baidu Migration makes use of big data to calculate and analyze the LBS (Location Based Services) big data it owns, and the visual presentation it adopts dynamically, instantly and intuitively shows the trajectory and characteristics of the great migration of people before and after the Spring Festival in China.
web address:/2021/
II. Introduction to basic grammar
grammatical |
clarification |
from import Geo | Import map library |
Geo() | Pyecharts Geographic Charting |
.add_map(maptype=“china“) | Map Type |
.add() | Add Data |
.set_global_opts() | Setting Global Configuration Items |
III. Mapping of China
Instance code:
from import Geo import as opts from commons import Faker ( Geo() .add_schema(maptype='china') # Types of Chinese maps used .add(series_name='', data_pair=[(i, j) for i, j in zip(, ())]) .set_global_opts( title_opts=(title='Map of China'), visualmap_opts=( # is_piecewise=True # Discontinuous display ) ) ).render()
Run results:
IV. Map of China (special effects scatterplot)
Instance code:
from import Geo import as opts from import ChartType from commons import Faker ( Geo() .add_schema(maptype='china') # Types of Chinese maps used .add(series_name='', data_pair=[(i, j) for i, j in zip(, ())], type_=ChartType.EFFECT_SCATTER) .set_global_opts( title_opts=(title='China Map(FX Scatterplot)'), visualmap_opts=( is_piecewise=True ) ) ).render()
Run results:
V. Mapping the geographic migration of China's population
Instance code:
from import Geo from import ChartType, SymbolType import as opts # Data construction (in tuple form) city_num = [('Guangzhou', 105), ('Chengdu', 70), ('Beijing', 99), ('Xi'an', 80)] start_end = [('Guangzhou', 'Chengdu'), ('Guangzhou', 'Beijing'), ('Guangzhou', 'Xi'an')] ( Geo() .add_schema(maptype='china', itemstyle_opts=(color='#323c48', border_color='#111')) # Map form settings .add('', data_pair=city_num, color='white') # Map data color settings (dots) .add('', data_pair=start_end, type_=, # Setup lines effect_opts=(symbol=,color='blue', symbol_size=7)) # Flow arrow drawing ).render()
Run results:
VI. Heat map: heat mapping of Guangdong map 1
Instance code:
from import Faker from pyecharts import options as opts from import Geo from import ChartType c = ( Geo() .add_schema(maptype="Guangdong", itemstyle_opts=(color="#323c48", border_color="#111"),) .add("",[list(z) for z in zip(Faker.guangdong_city, ())],type_=) .set_global_opts( visualmap_opts=(), title_opts=(title="Heat map of Guangdong"), ) ) ()
Run results:
VII. Heat maps: heat mapping of Guangdong maps2
Instance code:
from import Map from pyecharts import options as opts from import ChartType c = ( Map() .add('', [list(z) for z in zip(Faker.guangdong_city, ())], "Guangdong") .set_global_opts( title_opts=(title="Map-Guangdong"), visualmap_opts=(), ) ) ()
Run results:
to this article on Python data visualization based on pyecharts geographic charts to achieve the drawing of the article is introduced to this, more related to pyecharts geographic charts, please search for my previous posts or continue to browse the following related articles I hope you will support me in the future!