Introduction to some of the methods commonly used by the module
name (of a thing) | corresponds English -ity, -ism, -ization |
---|---|
(d0, d1, …, dn) | Generates a [d0, d1, ..., dn]-dimensional numpy array with elements taken from the mean distribution on [0, 1), or, if there is no parameter input, a number of [0, 1). |
(d0, d1, …, dn) | Generate a [d0, d1, ..., dn]-dimensional numpy array with a standard normal distribution. |
(low, high=None, size=None, dtype=‘I’) | Generates an integer in the range [low, high) or in the interval [0, low) if the parameter high is not entered. |
(low=0.0, high=1.0, size=None) | Generates a floating-point number that conforms to a uniform distribution with values in the range [low, high) and a default value in the range [0, 1.0). |
(loc=0.0, scale=1.0, size=None) | Generate floating point numbers with mean loc, standard deviation scale, and shape size according to a normal distribution. |
(size=None) | Generates a floating point number between [0.0, 1.0). |
(a, size=None, replace=True, p=None) | A random number of size (dimension) size is selected from a (array), replace=True means repeatable extraction, and p is the probability that each number in a occurs. If a is an integer, the array represented by a is array(a). |
(for) instance
(d0, d1, …, dn):
Generates a [d0, d1, ..., dn]-dimensional numpy array with elements taken from the mean distribution on [0, 1), or, if there is no parameter input, a number of [0, 1).
import numpy as np v1 = () v2 = (3,4) print(v1) print(v2)
The output result is:
0.618411110932038
[[0.35134062 0.55609186 0.4173297 0.85541691]
[0.35144304 0.31204156 0.60196109 0.390464 ]
[0.19186067 0.94570486 0.8637441 0.07028114]]
(d0, d1, …, dn):
Generate a [d0, d1, ..., dn]-dimensional numpy array with a standard normal distribution.
import numpy as np v1 = () v2 = (3,4) print(v1) print(v2)
The output result is:
0.47263651836701953
[[-0.23431214 0.97197099 0.52845269 -0.45246824]
[-1.1266395 -1.60040653 -2.64602615 -0.19457032]
[-0.520287 -1.0799122 0.08441667 0.34980224]]
(low, high=None, size=None, dtype=‘I’):
Generates an integer in the range [low, high) or in the interval [0, low) if the parameter high is not entered.
import numpy as np v1 = (5) v2 = (1,high = 5) v3 = (1,high = 5,size = [3,4]) print(v1) print(v2) print(v3)
The output result is:
2
3
[[1 1 3 1]
[2 2 3 2]
[3 4 2 1]]
(low=0.0, high=1.0, size=None):
Generates a floating-point number that conforms to a uniform distribution with values in the range [low, high) and a default value in the range [0, 1.0).
import numpy as np v1 = () v2 = (low = 0,high = 5) v3 = (low = 0,high = 5,size = [3,4]) print(v1) print(v2) print(v3)
The output result is:
0.6925621763952164
3.0483936610544218
[[1.34959297 4.84117424 0.41277118 4.81392216]
[2.91266734 0.87922181 3.39729422 3.34340092]
[0.45158364 3.8129479 0.54246798 2.57192192]]
(loc=0.0, scale=1.0, size=None)
Generate floating point numbers with mean loc, standard deviation scale, and shape size according to a normal distribution.
import numpy as np v1 = () v2 = (loc = 0,scale = 5) v3 = (loc = 0,scale = 5,size = [3,4]) print(v1) print(v2) print(v3)
The output result is:
0.7559391954091367
-3.359831771004067
[[ 3.90821047 6.37757533 6.3813528 0.86219281]
[ -3.61201084 4.05948053 -3.91172941 11.29050165]
[ -8.60318633 -10.07090496 -4.86557867 7.98536182]]
(size=None)
Generates a floating point number between [0.0, 1.0).
import numpy as np v1 = () v2 = (size = [3,4]) print(v1) print(v2)
The output result is:
0.5930924941107145
[[0.41002067 0.28097163 0.8908558 0.16951515]
[0.59730596 0.57475303 0.84174255 0.59633522]
[0.63508879 0.44138737 0.6223043 0.61540997]]
(a, size=None, replace=True, p=None)
Random numbers of size (dimension) size are selected from a (array), replace=True means repeatable extraction, and p is the probability that each number in a occurs.
If a is an integer, the array represented by a is range(a).
import numpy as np v1 = (5) v2 = (5,size = 5) v3 = ([1,2,3,4,5],size = 5) v4 = ([1,2,3,4,5],size = 5,p = [1,0,0,0,0]) v5 = ([1,2,3,4,5],size = 5,replace = False) print("v1:",v1) print("v2:",v2) print("v3:",v3) print("v4:",v4) print("v5:",v5)
The output result is:
v1: 1
v2: [0 0 4 0 4]
v3: [3 2 3 1 1]
v4: [1 1 1 1 1]
v5: [4 2 3 5 1]
Above is the detailed content of python artificial intelligence tensorflow function module usage, more information about tensorflow function module please pay attention to my other related articles!