I. ( ) Grammar
boxplot(x, notch=None, sym=None, vert=None, whis=None, positions=None, widths=None, patch_artist=None, bootstrap=None, usermedians=None, conf_intervals=None, meanline=None,showmeans=None, showcaps=None, showbox=None, showfliers=None, boxprops=None, labels=None, flierprops=None, medianprops=None, meanprops=None, capprops=None, whiskerprops=None, manage_ticks=True, autorange=False, zorder=None, *, data=None)
( x, # Specify the data to be plotted in a box plot notch=True or False, # Whether the boxplot is notched or not, default is non-notched. sym, # str value that specifies the shape of the anomaly, defaults to a + display vert=True or False, # Whether the box plot needs to be placed vertically, default True Vertical Placement whis, # float value, specify the distance between the upper and lower whiskers and the upper and lower quartiles, default is 1.5 times the quartile difference bootstrap, # int value specifying the middle of the bootstrap confidence interval cut boxplot positions, # Specify the position of the box plot Default is [0,1,2...]. widths, # Specify the width of the box plot, default value: 0.5 patch_artist=True or False, # Whether to fill the color of the box Default value False no fill labels, # Add labels to box-and-line diagrams, similar to what a legend does manage_ticks=True or False, # If True, the scale positions and labels will be adjusted to match the position of the box-and-line plot. Default: True showmeans=True or False, # Whether to display the mean value, default: False does not display meanline=True or False, # Whether to represent the mean as a line, default value False to represent it as a dot zorder, # Sequence of box plots showcaps=True or False, # Whether to display the two lines at the top and the end of the box plot, default value True display showbox=True or False, # Whether or not to display the box of the box chart, the default value True is displayed; showfliers=True or False, # Whether to display the exception value, the default value True is displayed; boxprops, # Set the properties of the box, such as the border color, fill color, and so on; flierprops, # Set the properties of the exception, such as the shape, size, and fill color of the exception; medianprops, # Set the properties of the median, such as the type of line, thickness, etc; meanprops, # Set the properties of the mean, such as point size, color, etc; capprops, # Set the properties of the top and end lines of the box-and-line diagram, such as color, thickness, and so on; whiskerprops,# Set the properties of the whiskers, such as color, thickness, type of line, etc. )
II. Drawing of box diagrams
① Draw a simple box diagram
import as plt import numpy as np data=[(0,std,100) for std in range(1,4)] (data) ()
②Plotting the box shape for each parameter
(1) notch parameter (bool value, whether or not to notch the form to show the box plot, default value False non-notch)
import as plt data=[(0,std,100) for std in range(1,4)] fig=() # notch=True form of notch ax1=fig.add_subplot(121) (data,notch=True) ('Form of notch',size=20) # notch=False non-notched forms ax2=fig.add_subplot(122) (data,notch=False) ('Non-notched forms',size=20) ()
(2) sym (str, specifies the shape of the anomaly, defaults to a + display)
import as plt import numpy as np data=[(0,std,100) for std in range(1,4)] (data,sym='^') ()
(3) vert parameter (bool value, whether the box plot needs to be placed vertically, default True vertical placement)
import as plt data=[(0,std,100) for std in range(1,4)] fig=() # vert=True box plot placed vertically ax1=fig.add_subplot(121) (data,vert=True) ('Vertical placement',size=20) # vert=False box plot horizontal placement ax2=fig.add_subplot(122) (data,vert=False) ('Horizontal placement',size=20) ()
(4) widths parameter (float value, specifies the width of the box plot, default value: 0.5)
import as plt import numpy as np data=[(0,std,100) for std in range(1,4)] (data,widths=[0.3,0.6,0.5]) ()
(5) patch_artist (bool value, whether to fill the box color, default value: False not fill)
import as plt data=[(0,std,100) for std in range(1,4)] fig=() # patch_artist=True fill box color ax1=fig.add_subplot(121) (data,patch_artist=True) ('Fill box color',size=20) # patch_artist=False does not fill the box color ax2=fig.add_subplot(122) (data,patch_artist=False) ('Do not fill the box color',size=20) ()
(6) showmeans parameter (bool value, whether to show the mean value, the default value False does not show)
import as plt data=[(0,std,100) for std in range(1,4)] fig=() # showmeans=True showmeans ax1=fig.add_subplot(121) (data,showmeans=True) ('Show Means',size=20) # showmeans=False does not show means ax2=fig.add_subplot(122) (data,showmeans=False) ('Do not show mean values',size=20) ()
(7) meanline parameter (bool value, whether to express the mean value in the form of a line, the default value of False is expressed in dots)
Note: The effect is only visible when showmeans=True (when the mean is displayed).
import as plt data=[(0,std,100) for std in range(1,4)] fig=() # meanline=True Display mean values as lines ax1=fig.add_subplot(121) (data,showmeans=True,meanline=True) ('Showing averages with lines',size=20) # meanline=False show mean with points ax2=fig.add_subplot(122) (data,showmeans=True,meanline=False) ('Showing averages with dots',size=20) ()
(8) showcaps parameter (bool value, whether to display the top and end of the box plot of the two lines, the default value True show)
import as plt data=[(0,std,100) for std in range(1,4)] fig=() # showcaps=True displays the two lines at the top and the end of the box plot ax1=fig.add_subplot(121) (data,showcaps=True) ('Display',size=20) # showcaps=False does not show the two lines at the top and the end of the boxplot ax2=fig.add_subplot(122) (data,showcaps=False) ('Not shown',size=20) ()
(9) showbox parameter (bool value, whether to display the box of the box line chart, the default value True show)
import as plt data=[(0,std,100) for std in range(1,4)] fig=() # showbox=True show box for boxplots ax1=fig.add_subplot(121) (data,showbox=True) ('Display',size=20) # showbox=False does not show the box of a box plot ax2=fig.add_subplot(122) (data,showbox=False) ('Not shown',size=20) ()
(10) showfliers parameter (bool value, whether to display abnormal values, the default value True display)
import as plt data=[(0,std,100) for std in range(1,4)] fig=() # showfliers=True show outliers ax1=fig.add_subplot(121) (data,showfliers=True) ('Display',size=20) # showfliers=False does not show outliers ax2=fig.add_subplot(122) (data,showfliers=False) ('Not shown',size=20) ()
(11) boxprops parameters (set box properties such as border color, fill color, etc.)
import as plt data=[(0,std,100) for std in range(1,4)] fig=() # sboxprops={'color':'r'} set the box border color ax1=fig.add_subplot(121) (data,boxprops={'color':'r'}) ('Set box border color',size=20) # patch_artist=True Fill box color # boxprops={'facecolor':'pink'} set box fill color ax2=fig.add_subplot(122) (data,patch_artist=True,boxprops={'facecolor':'pink'}) ('Set box fill color',size=20) ()
(12) flierprops parameter (sets properties of outliers, such as shape, size, fill color of outlier, etc.)
import as plt import numpy as np data=[(0,std,100) for std in range(1,4)] (data,flierprops={'marker':'*'}) ()
(13) medianprops parameter (sets properties of the median, such as type of line, thickness, etc.)
import as plt import numpy as np data=[(0,std,100) for std in range(1,4)] (data,medianprops={'linestyle':':','linewidth':5,'color':'m'}) ()
(14) meanprops parameter (sets the properties of the mean)
import as plt import numpy as np data=[(0,std,100) for std in range(1,4)] (data,showmeans=True,meanprops={'marker':'*'}) ()
(15) capprops parameter (sets the properties of the top and end lines of the box-and-line diagram, such as color, thickness, etc.)
import as plt import numpy as np data=[(0,std,100) for std in range(1,4)] (data, showmeans=True, capprops={'linestyle':'--','color':'m','linewidth':3}) ()
(16) whiskerprops parameter (sets whisker properties such as color, thickness, type of line, etc.)
import as plt import numpy as np data=[(0,std,100) for std in range(1,4)] (data, showmeans=True, whiskerprops={'linestyle':'--','color':'m','linewidth':3}) ()
summarize
to this article on the use of Python () to draw a box plot of the article is introduced to this, more related () to draw a box plot content, please search for my previous posts or continue to browse the following related articles I hope you will support me in the future more!